Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A comparative study of general fuzzy min-max neural networks for pattern classification problems (1907.13308v2)

Published 31 Jul 2019 in cs.LG and stat.ML

Abstract: General fuzzy min-max (GFMM) neural network is a generalization of fuzzy neural networks formed by hyperbox fuzzy sets for classification and clustering problems. Two principle algorithms are deployed to train this type of neural network, i.e., incremental learning and agglomerative learning. This paper presents a comprehensive empirical study of performance influencing factors, advantages, and drawbacks of the general fuzzy min-max neural network on pattern classification problems. The subjects of this study include (1) the impact of maximum hyperbox size, (2) the influence of the similarity threshold and measures on the agglomerative learning algorithm, (3) the effect of data presentation order, (4) comparative performance evaluation of the GFMM with other types of fuzzy min-max neural networks and prevalent machine learning algorithms. The experimental results on benchmark datasets widely used in machine learning showed overall strong and weak points of the GFMM classifier. These outcomes also informed potential research directions for this class of machine learning algorithms in the future.

Citations (26)

Summary

We haven't generated a summary for this paper yet.