Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-dimensional statistical manifold embedding of directed graphs (1905.10227v3)

Published 24 May 2019 in cs.LG and stat.ML

Abstract: We propose a novel node embedding of directed graphs to statistical manifolds, which is based on a global minimization of pairwise relative entropy and graph geodesics in a non-linear way. Each node is encoded with a probability density function over a measurable space. Furthermore, we analyze the connection between the geometrical properties of such embedding and their efficient learning procedure. Extensive experiments show that our proposed embedding is better in preserving the global geodesic information of graphs, as well as outperforming existing embedding models on directed graphs in a variety of evaluation metrics, in an unsupervised setting.

Citations (3)

Summary

We haven't generated a summary for this paper yet.