Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Outlier Robust Extreme Learning Machine for Multi-Target Regression (1905.09368v2)

Published 22 May 2019 in cs.LG and stat.ML

Abstract: The popularity of algorithms based on Extreme Learning Machine (ELM), which can be used to train Single Layer Feedforward Neural Networks (SLFN), has increased in the past years. They have been successfully applied to a wide range of classification and regression tasks. The most commonly used methods are the ones based on minimizing the $\ell_2$ norm of the error, which is not suitable to deal with outliers, essentially in regression tasks. The use of $\ell_1$ norm was proposed in Outlier Robust ELM (OR-ELM), which is defined to one-dimensional outputs. In this paper, we generalize OR-ELM to deal with multi-target regression problems, using the error $\ell_{2,1}$ norm and the Elastic Net theory, which can result in a more sparse network, resulting in our method, Generalized Outlier Robust ELM (GOR-ELM). We use Alternating Direction Method of Multipliers (ADMM) to solve the resulting optimization problem. An incremental version of GOR-ELM is also proposed. We chose 15 public real-world multi-target regression datasets to test our methods. Our conducted experiments show that they are statistically better than other ELM-based techniques, when considering data contaminated with outliers, and equivalent to them, otherwise.

Citations (14)

Summary

We haven't generated a summary for this paper yet.