Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Variations on the Petersen colouring conjecture (1905.07913v1)

Published 20 May 2019 in math.CO

Abstract: The Petersen colouring conjecture states that every bridgeless cubic graph admits an edge-colouring with $5$ colours such that for every edge $e$, the set of colours assigned to the edges adjacent to $e$ has cardinality either $2$ or $4$, but not $3$. We prove that every bridgeless cubic graph $G$ admits an edge-colouring with $4$ colours such that at most $\frac45\cdot|V(G)|$ edges do not satisfy the above condition. This bound is tight and the Petersen graph is the only connected graph for which the bound cannot be decreased. We obtain such a $4$-edge-colouring by using a carefully chosen subset of edges of a perfect matching, and the analysis relies on a simple discharging procedure with essentially no reductions and very few rules.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube