Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error Exponent Bounds for the Bee-Identification Problem (1905.07868v2)

Published 20 May 2019 in cs.IT and math.IT

Abstract: Consider the problem of identifying a massive number of bees, uniquely labeled with barcodes, using noisy measurements. We formally introduce this `bee-identification problem', define its error exponent, and derive efficiently computable upper and lower bounds for this exponent. We show that joint decoding of barcodes provides a significantly better exponent compared to separate decoding followed by permutation inference. For low rates, we prove that the lower bound on the bee-identification exponent obtained using typical random codes (TRC) is strictly better than the corresponding bound obtained using a random code ensemble (RCE). Further, as the rate approaches zero, we prove that the upper bound on the bee-identification exponent meets the lower bound obtained using TRC with joint barcode decoding.

Summary

We haven't generated a summary for this paper yet.