Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense (1905.06757v3)

Published 16 May 2019 in math.PR, math-ph, and math.MP

Abstract: Recent works have shown that random triangulations decorated by critical ($p=1/2$) Bernoulli site percolation converge in the scaling limit to a $\sqrt{8/3}$-Liouville quantum gravity (LQG) surface (equivalently, a Brownian surface) decorated by SLE$_6$ in two different ways: 1. The triangulation, viewed as a curve-decorated metric measure space equipped with its graph distance, the counting measure on vertices, and a single percolation interface converges with respect to a version of the Gromov-Hausdorff topology. 2. There is a bijective encoding of the site-percolated triangulation by means of a two-dimensional random walk, and this walk converges to the correlated two-dimensional Brownian motion which encodes SLE$_6$-decorated $\sqrt{8/3}$-LQG via the mating-of-trees theorem of Duplantier-Miller-Sheffield (2014); this is sometimes called $\textit{peanosphere convergence}$. We prove that one in fact has $\textit{joint}$ convergence in both of these two senses simultaneously. We also improve the metric convergence result by showing that the map decorated by the full collection of percolation interfaces (rather than just a single interface) converges to $\sqrt{8/3}$-LQG decorated by CLE$_6$ in the metric space sense. This is the first work to prove simultaneous convergence of any random planar map model in the metric and peanosphere senses. Moreover, this work is an important step in an ongoing program to prove that random triangulations embedded into $\mathbb C$ via the so-called $\textit{Cardy embedding}$ converge to $\sqrt{8/3}$-LQG.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube