Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sample Efficient Toeplitz Covariance Estimation (1905.05643v5)

Published 14 May 2019 in eess.SP, cs.DS, cs.LG, math.ST, and stat.TH

Abstract: We study the sample complexity of estimating the covariance matrix $T$ of a distribution $\mathcal{D}$ over $d$-dimensional vectors, under the assumption that $T$ is Toeplitz. This assumption arises in many signal processing problems, where the covariance between any two measurements only depends on the time or distance between those measurements. We are interested in estimation strategies that may choose to view only a subset of entries in each vector sample $x \sim \mathcal{D}$, which often equates to reducing hardware and communication requirements in applications ranging from wireless signal processing to advanced imaging. Our goal is to minimize both 1) the number of vector samples drawn from $\mathcal{D}$ and 2) the number of entries accessed in each sample. We provide some of the first non-asymptotic bounds on these sample complexity measures that exploit $T$'s Toeplitz structure, and by doing so, significantly improve on results for generic covariance matrices. Our bounds follow from a novel analysis of classical and widely used estimation algorithms (along with some new variants), including methods based on selecting entries from each vector sample according to a so-called sparse ruler. In many cases, we pair our upper bounds with matching or nearly matching lower bounds. In addition to results that hold for any Toeplitz $T$, we further study the important setting when $T$ is close to low-rank, which is often the case in practice. We show that methods based on sparse rulers perform even better in this setting, with sample complexity scaling sublinearly in $d$. Motivated by this finding, we develop a new covariance estimation strategy that further improves on all existing methods in the low-rank case: when $T$ is rank-$k$ or nearly rank-$k$, it achieves sample complexity depending polynomially on $k$ and only logarithmically on $d$.

Citations (13)

Summary

We haven't generated a summary for this paper yet.