Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Type Theory for Defining Logics and Proofs (1905.02617v1)

Published 7 May 2019 in cs.LO and cs.PL

Abstract: We describe a Martin-L\"of-style dependent type theory, called Cocon, that allows us to mix the intensional function space that is used to represent higher-order abstract syntax (HOAS) trees with the extensional function space that describes (recursive) computations. We mediate between HOAS representations and computations using contextual modal types. Our type theory also supports an infinite hierarchy of universes and hence supports type-level computation thereby providing metaprogramming and (small-scale) reflection. Our main contribution is the development of a Kripke-style model for Cocon that allows us to prove normalization. From the normalization proof, we derive subject reduction and consistency. Our work lays the foundation to incorporate the methodology of logical frameworks into systems such as Agda and bridges the longstanding gap between these two worlds.

Citations (15)

Summary

We haven't generated a summary for this paper yet.