On The S-Matrix of Ising Field Theory in Two Dimensions (1905.00710v3)
Abstract: We explore the analytic structure of the non-perturbative S-matrix in arguably the simplest family of massive non-integrable quantum field theories: the Ising field theory (IFT) in two dimensions, which may be viewed as the Ising CFT deformed by its two relevant operators, or equivalently, the scaling limit of the Ising model in a magnetic field. Our strategy is that of collider physics: we employ Hamiltonian truncation method (TFFSA) to extract the scattering phase of the lightest particles in the elastic regime, and combine it with S-matrix bootstrap methods based on unitarity and analyticity assumptions to determine the analytic continuation of the 2 to 2 S-matrix element to the complex s-plane. Focusing primarily on the "high temperature" regime in which the IFT interpolates between that of a weakly coupled massive fermion and the E8 affine Toda theory, we will numerically determine 3-particle amplitudes, follow the evolution of poles and certain resonances of the S-matrix, and exclude the possibility of unknown wide resonances up to reasonably high energies.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.