Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Efficient Simulation Budget Allocation for Subset Selection Using Regression Metamodels (1904.10639v1)

Published 24 Apr 2019 in math.OC and stat.ME

Abstract: This research considers the ranking and selection (R&S) problem of selecting the optimal subset from a finite set of alternative designs. Given the total simulation budget constraint, we aim to maximize the probability of correctly selecting the top-m designs. In order to improve the selection efficiency, we incorporate the information from across the domain into regression metamodels. In this research, we assume that the mean performance of each design is approximately quadratic. To achieve a better fit of this model, we divide the solution space into adjacent partitions such that the quadratic assumption can be satisfied within each partition. Using the large deviation theory, we propose an approximately optimal simulation budget allocation rule in the presence of partitioned domains. Numerical experiments demonstrate that our approach can enhance the simulation efficiency significantly.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.