Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identification of intrinsic long-range degree correlations in complex networks (1904.10148v2)

Published 23 Apr 2019 in physics.soc-ph and cs.SI

Abstract: Many real-world networks exhibit degree-degree correlations between nodes separated by more than one step. Such long-range degree correlations (LRDCs) can be fully described by one joint and four conditional probability distributions with respect to degrees of two randomly chosen nodes and shortest path distance between them. While LRDCs are induced by nearest-neighbor degree correlations (NNDCs) between adjacent nodes, some networks possess intrinsic LRDCs which cannot be generated by NNDCs. Here we develop a method to extract intrinsic LRDC in a correlated network by comparing the probability distributions for the given network with those for nearest-neighbor correlated random networks. We also demonstrate the utility of our method by applying it to several real-world networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.