Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing the intrinsic correlations of scale-free networks (1506.03289v1)

Published 10 Jun 2015 in physics.soc-ph and cs.SI

Abstract: Very often, when studying topological or dynamical properties of random scale-free networks, it is tacitly assumed that degree-degree correlations are not present. However, simple constraints, such as the absence of multiple edges and self-loops, can give rise to intrinsic correlations in these structures. In the same way that Fermionic correlations in thermodynamic systems are relevant only in the limit of low temperature, the intrinsic correlations in scale-free networks are relevant only when the extreme values for the degrees grow faster than the square-root of the network size. In this situation, these correlations can significantly affect the dependence of the average degree of the nearest neighbors of a given vertice on this vertices's degree. Here, we introduce an analytical approach that is capable to predict the functional form of this property. Moreover, our results indicate that random scale-free networks models are not self-averaging, that is, the second moment of their degree distribution may vary orders of magnitude among different realizations. Finally, we argue that the intrinsic correlations investigated here may have profound impact on the critical properties of random scale-free networks.

Citations (8)

Summary

We haven't generated a summary for this paper yet.