Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clause-Wise and Recursive Decoding for Complex and Cross-Domain Text-to-SQL Generation (1904.08835v2)

Published 18 Apr 2019 in cs.CL and cs.DB

Abstract: Most deep learning approaches for text-to-SQL generation are limited to the WikiSQL dataset, which only supports very simple queries over a single table. We focus on the Spider dataset, a complex and cross-domain text-to-SQL task, which includes complex queries over multiple tables. In this paper, we propose a SQL clause-wise decoding neural architecture with a self-attention based database schema encoder to address the Spider task. Each of the clause-specific decoders consists of a set of sub-modules, which is defined by the syntax of each clause. Additionally, our model works recursively to support nested queries. When evaluated on the Spider dataset, our approach achieves 4.6\% and 9.8\% accuracy gain in the test and dev sets, respectively. In addition, we show that our model is significantly more effective at predicting complex and nested queries than previous work.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Dongjun Lee (29 papers)
Citations (3)