Papers
Topics
Authors
Recent
Search
2000 character limit reached

Constrained Output Embeddings for End-to-End Code-Switching Speech Recognition with Only Monolingual Data

Published 8 Apr 2019 in cs.CL | (1904.03802v2)

Abstract: The lack of code-switch training data is one of the major concerns in the development of end-to-end code-switching automatic speech recognition (ASR) models. In this work, we propose a method to train an improved end-to-end code-switching ASR using only monolingual data. Our method encourages the distributions of output token embeddings of monolingual languages to be similar, and hence, promotes the ASR model to easily code-switch between languages. Specifically, we propose to use Jensen-Shannon divergence and cosine distance based constraints. The former will enforce output embeddings of monolingual languages to possess similar distributions, while the later simply brings the centroids of two distributions to be close to each other. Experimental results demonstrate high effectiveness of the proposed method, yielding up to 4.5% absolute mixed error rate improvement on Mandarin-English code-switching ASR task.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.