Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Features for Robust Detection of Acoustic Events in Sleep-Disordered Breathing (1904.02992v1)

Published 5 Apr 2019 in eess.AS and cs.SD

Abstract: Sleep-disordered breathing (SDB) is a serious and prevalent condition, and acoustic analysis via consumer devices (e.g. smartphones) offers a low-cost solution to screening for it. We present a novel approach for the acoustic identification of SDB sounds, such as snoring, using bottleneck features learned from a corpus of whole-night sound recordings. Two types of bottleneck features are described, obtained by applying a deep autoencoder to the output of an auditory model or a short-term autocorrelation analysis. We investigate two architectures for snore sound detection: a tandem system and a hybrid system. In both cases, a `LLM' (LM) was incorporated to exploit information about the sequence of different SDB events. Our results show that the proposed bottleneck features give better performance than conventional mel-frequency cepstral coefficients, and that the tandem system outperforms the hybrid system given the limited amount of labelled training data available. The LM made a small improvement to the performance of both classifiers.

Citations (20)

Summary

We haven't generated a summary for this paper yet.