Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boosted Attention: Leveraging Human Attention for Image Captioning (1904.00767v1)

Published 18 Mar 2019 in cs.CV

Abstract: Visual attention has shown usefulness in image captioning, with the goal of enabling a caption model to selectively focus on regions of interest. Existing models typically rely on top-down language information and learn attention implicitly by optimizing the captioning objectives. While somewhat effective, the learned top-down attention can fail to focus on correct regions of interest without direct supervision of attention. Inspired by the human visual system which is driven by not only the task-specific top-down signals but also the visual stimuli, we in this work propose to use both types of attention for image captioning. In particular, we highlight the complementary nature of the two types of attention and develop a model (Boosted Attention) to integrate them for image captioning. We validate the proposed approach with state-of-the-art performance across various evaluation metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shi Chen (87 papers)
  2. Qi Zhao (181 papers)
Citations (46)