Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Text-guided Attention Model for Image Captioning (1612.03557v1)

Published 12 Dec 2016 in cs.CV

Abstract: Visual attention plays an important role to understand images and demonstrates its effectiveness in generating natural language descriptions of images. On the other hand, recent studies show that language associated with an image can steer visual attention in the scene during our cognitive process. Inspired by this, we introduce a text-guided attention model for image captioning, which learns to drive visual attention using associated captions. For this model, we propose an exemplar-based learning approach that retrieves from training data associated captions with each image, and use them to learn attention on visual features. Our attention model enables to describe a detailed state of scenes by distinguishing small or confusable objects effectively. We validate our model on MS-COCO Captioning benchmark and achieve the state-of-the-art performance in standard metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jonghwan Mun (16 papers)
  2. Minsu Cho (105 papers)
  3. Bohyung Han (86 papers)
Citations (91)