Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Error Analysis for the Particle Filter: Methods and Theoretical Support (1903.12078v1)

Published 26 Mar 2019 in stat.CO and stat.AP

Abstract: The particle filter is a popular Bayesian filtering algorithm for use in cases where the state-space model is nonlinear and/or the random terms (initial state or noises) are non-Gaussian distributed. We study the behavior of the error in the particle filter algorithm as the number of particles gets large. After a decomposition of the error into two terms, we show that the difference between the estimator and the conditional mean is asymptotically normal when the resampling is done at every step in the filtering process. Two nonlinear/non-Gaussian examples are tested to verify this conclusion.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.