Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 72 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

Optimal Random Sampling from Distributed Streams Revisited (1903.12065v1)

Published 28 Mar 2019 in cs.DC

Abstract: We give an improved algorithm for drawing a random sample from a large data stream when the input elements are distributed across multiple sites which communicate via a central coordinator. At any point in time the set of elements held by the coordinator represent a uniform random sample from the set of all the elements observed so far. When compared with prior work, our algorithms asymptotically improve the total number of messages sent in the system as well as the computation required of the coordinator. We also present a matching lower bound, showing that our protocol sends the optimal number of messages up to a constant factor with large probability. As a byproduct, we obtain an improved algorithm for finding the heavy hitters across multiple distributed sites.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube