Poisson Principal Bundles (1903.12006v3)
Abstract: We semiclassicalise the theory of quantum group principal bundles to the level of Poisson geometry. The total space $X$ is a Poisson manifold with Poisson-compatible contravariant connection, the fibre is a Poisson-Lie group in the sense of Drinfeld with bicovariant Poisson-compatible contravariant connection, and the base has an inherited Poisson structure and Poisson-compatible contravariant connection. The latter are known to be the semiclassical data for a quantum differential calculus. The theory is illustrated by the Poisson level of the $q$-Hopf fibration on the standard $q$-sphere. We also construct the Poisson level of the spin connection on a principal bundle.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.