Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Transfer matrices for discrete Hermitian operators and absolutely continuous spectrum (1903.10114v2)

Published 25 Mar 2019 in math.SP, math-ph, math.FA, and math.MP

Abstract: We introduce a transfer matrix method for the spectral analysis of discrete Hermitian operators with locally finite hopping. Such operators can be associated with a locally finite graph structure and the method works in principle on any such graph. The key result is a spectral averaging formula well known for Jacobi or 1-channel operators giving the spectral measure at a root vector by a weak limit of products of transfer matrices. Here, we assume an increase in the rank for the connections between spherical shells which is a typical situation and true on finite dimensional lattices $\mathbb{Z}d$. The product of transfer matrices are considered as a transformation of the relations of 'boundary resolvent data' along the shells. The trade off is that at each level or shell with more forward then backward connections (rank-increase) we have a set of transfer matrices at a fixed spectral parameter. Still, considering these products we can relate the minimal norm growth over the set of all products with the spectral measure at the root and obtain several criteria for absolutely continuous spectrum. Finally, we give some example of operators on stair-like graphs (increasing width) which has absolutely continuous spectrum with a sufficiently fast decaying random shell-matrix-potential.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)