Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Promising Sub-Sequences of Jobs to solve the No-Wait Flowshop Scheduling Problem (1903.09035v1)

Published 21 Mar 2019 in cs.AI

Abstract: The no-wait flowshop scheduling problem is a variant of the classical permutation flowshop problem, with the additional constraint that jobs have to be processed by the successive machines without waiting time. To efficiently address this NP-hard combinatorial optimization problem we conduct an analysis of the structure of good quality solutions. This analysis shows that the No-Wait specificity gives them a common structure: they share identical sub-sequences of jobs, we call super-jobs. After a discussion on the way to identify these super-jobs, we propose IG-SJ, an algorithm that exploits super-jobs within the state-of-the-art algorithm for the classical permutation flowshop, the well-known Iterated Greedy (IG) algorithm. An iterative approach of IG-SJ is also proposed. Experiments are conducted on Taillard's instances. The experimental results show that exploiting super-jobs is successful since IG-SJ is able to find 64 new best solutions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (2)

Summary

We haven't generated a summary for this paper yet.