Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Elements and Principles for Characterizing Variation between Data Analyses (1903.07639v2)

Published 18 Mar 2019 in stat.AP

Abstract: The data revolution has led to an increased interest in the practice of data analysis. For a given problem, there can be significant or subtle differences in how a data analyst constructs or creates a data analysis, including differences in the choice of methods, tooling, and workflow. In addition, data analysts can prioritize (or not) certain objective characteristics in a data analysis, leading to differences in the quality or experience of the data analysis, such as an analysis that is more or less reproducible or an analysis that is more or less exhaustive. However, data analysts currently lack a formal mechanism to compare and contrast what makes analyses different from each other. To address this problem, we introduce a vocabulary to describe and characterize variation between data analyses. We denote this vocabulary as the elements and principles of data analysis, and we use them to describe the fundamental concepts for the practice and teaching of creating a data analysis. This leads to two insights: it suggests a formal mechanism to evaluate data analyses based on objective characteristics, and it provides a framework to teach students how to build data analyses.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.