Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Joint Mean-Covariance Estimation via the Horseshoe with an Application in Genomic Data Analysis (1903.06768v2)

Published 15 Mar 2019 in stat.ME

Abstract: Seemingly unrelated regression is a natural framework for regressing multiple correlated responses on multiple predictors. The model is very flexible, with multiple linear regression and covariance selection models being special cases. However, its practical deployment in genomic data analysis under a Bayesian framework is limited due to both statistical and computational challenges. The statistical challenge is that one needs to infer both the mean vector and the inverse covariance matrix, a problem inherently more complex than separately estimating each. The computational challenge is due to the dimensionality of the parameter space that routinely exceeds the sample size. We propose the use of horseshoe priors on both the mean vector and the inverse covariance matrix. This prior has demonstrated excellent performance when estimating a mean vector or inverse covariance matrix separately. The current work shows these advantages are also present when addressing both simultaneously. A full Bayesian treatment is proposed, with a sampling algorithm that is linear in the number of predictors. MATLAB code implementing the algorithm is freely available from github at https://github.com/liyf1988/HS_GHS. Extensive performance comparisons are provided with both frequentist and Bayesian alternatives, and both estimation and prediction performances are verified on a genomic data set.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.