Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A nonasymptotic law of iterated logarithm for general M-estimators (1903.06576v2)

Published 15 Mar 2019 in math.ST, cs.LG, and stat.TH

Abstract: M-estimators are ubiquitous in machine learning and statistical learning theory. They are used both for defining prediction strategies and for evaluating their precision. In this paper, we propose the first non-asymptotic "any-time" deviation bounds for general M-estimators, where "any-time" means that the bound holds with a prescribed probability for every sample size. These bounds are nonasymptotic versions of the law of iterated logarithm. They are established under general assumptions such as Lipschitz continuity of the loss function and (local) curvature of the population risk. These conditions are satisfied for most examples used in machine learning, including those ensuring robustness to outliers and to heavy tailed distributions. As an example of application, we consider the problem of best arm identification in a parametric stochastic multi-arm bandit setting. We show that the established bound can be converted into a new algorithm, with provably optimal theoretical guarantees. Numerical experiments illustrating the validity of the algorithm are reported.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.