Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 458 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

Determining system Hamiltonian from eigenstate measurements without correlation functions (1903.06569v3)

Published 15 Mar 2019 in quant-ph

Abstract: Local Hamiltonians arise naturally in physical systems. Despite its seemingly `simple' local structure, exotic features such as nonlocal correlations and topological orders exhibit in eigenstates of these systems. Previous studies for recovering local Hamiltonians from measurements on an eigenstate $|\psi\rangle$ require information of nonlocal correlation functions. In this work, we develop an algorithm to determine local Hamiltonians from only local measurements on $|\psi\rangle$, by reformulating the task as an unconstrained optimization problem of certain target function of Hamiltonian parameters, with only polynomial number of parameters in terms of system size. We also develop a machine learning-based-method to solve the first-order gradient used in the algorithm. Our method is tested numerically for randomly generated local Hamiltonians and returns promising reconstruction in the desired accuracy. Our result shed light on the fundamental question on how a single eigenstate can encode the full system Hamiltonian, indicating a somewhat surprising answer that only local measurements are enough without additional assumptions, for generic cases.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.