Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Price of Anarchy in Cost-Sharing Games (1903.06288v1)

Published 14 Mar 2019 in cs.SY, cs.GT, and cs.MA

Abstract: The design of distributed algorithms is central to the study of multiagent systems control. In this paper, we consider a class of combinatorial cost-minimization problems and propose a framework for designing distributed algorithms with a priori performance guarantees that are near-optimal. We approach this problem from a game-theoretic perspective, assigning agents cost functions such that the equilibrium efficiency (price of anarchy) is optimized. Once agents' cost functions have been specified, any algorithm capable of computing a Nash equilibrium of the system inherits a performance guarantee matching the price of anarchy. Towards this goal, we formulate the problem of computing the price of anarchy as a tractable linear program. We then present a framework for designing agents' local cost functions in order to optimize for the worst-case equilibrium efficiency. Finally, we investigate the implications of our findings when this framework is applied to systems with convex, nondecreasing costs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.