Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Utility Design for Distributed Resource Allocation -- Part I: Characterizing and Optimizing the Exact Price of Anarchy (1807.01333v3)

Published 3 Jul 2018 in cs.GT and math.OC

Abstract: Game theory has emerged as a fruitful paradigm for the design of networked multiagent systems. A fundamental component of this approach is the design of agents' utility functions so that their self-interested maximization results in a desirable collective behavior. In this work we focus on a well-studied class of distributed resource allocation problems where each agent is requested to select a subset of resources with the goal of optimizing a given system-level objective. Our core contribution is the development of a novel framework to tightly characterize the worst case performance of any resulting Nash equilibrium (price of anarchy) as a function of the chosen agents' utility functions. Leveraging this result, we identify how to design such utilities so as to optimize the price of anarchy through a tractable linear program. This provides us with a priori performance certificates applicable to any existing learning algorithm capable of driving the system to an equilibrium. Part II of this work specializes these results to submodular and supermodular objectives, discusses the complexity of computing Nash equilibria, and provides multiple illustrations of the theoretical findings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dario Paccagnan (30 papers)
  2. Rahul Chandan (19 papers)
  3. Jason R. Marden (106 papers)
Citations (27)