Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Syntactic approaches to opetopes (1903.05848v1)

Published 14 Mar 2019 in math.CT

Abstract: Opetopes are algebraic descriptions of shapes corresponding to compositions in higher dimensions. As such, they offer an approach to higher-dimensional algebraic structures, and in particular, to the definition of weak $\omega$-categories, which was the original motivation for their introduction by Baez and Dolan. They are classically defined inductively (as free operads in Leinster's approach, or as zoom complexes in the formalism of Kock et al.), using abstract constructions making them difficult to manipulate with a computer. In this paper, we present two purely syntactic descriptions of opetopes as sequent calculi, the first using variables to implement the compositional nature of opetopes, the second using a calculus of higher addresses. We prove that well-typed sequents in both systems are in bijection with opetopes as defined in the more traditional approaches. Additionally, we propose three variants to describe opetopic sets. We expect that the resulting structures can serve as natural foundations for mechanized tools based on opetopes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.