Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The multidimensional truncated Moment Problem: Carathéodory Numbers from Hilbert Functions (1903.00598v3)

Published 2 Mar 2019 in math.FA

Abstract: In this paper we improve the bounds for the Carath\'eodory number, especially on algebraic varieties and with small gaps (not all monomials are present). We provide explicit lower and upper bounds on algebraic varieties, $\mathbb{R}n$, and $[0,1]n$. We also treat moment problems with small gaps. We find that for every $\varepsilon>0$ and $d\in\mathbb{N}$ there is a $n\in\mathbb{N}$ such that we can construct a moment functional $L:\mathbb{R}[x_1,\dots,x_n]{\leq d}\rightarrow\mathbb{R}$ which needs at least $(1-\varepsilon)\cdot\left(\begin{smaLLMatrix} n+d\ n\end{smaLLMatrix}\right)$ atoms $l{x_i}$. Consequences and results for the Hankel matrix and flat extension are gained. We find that there are moment functionals $L:\mathbb{R}[x_1,\dots,x_n]{\leq 2d}\rightarrow\mathbb{R}$ which need to be extended to the worst case degree $4d$, $\tilde{L}:\mathbb{R}[x_1,\dots,x_n]{\leq 4d}\rightarrow\mathbb{R}$, in order to have a flat extension.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube