Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Real-time quantum dynamics, path integrals and the method of thimbles (1902.09147v2)

Published 25 Feb 2019 in hep-lat, hep-ph, and hep-th

Abstract: Direct numerical evaluation of the real-time path integral has a well-known sign problem that makes convergence exponentially slow. One promising remedy is to use Picard-Lefschetz theory to flow the domain of the field variables into the complex plane, where the integral is better behaved. By Cauchy's theorem, the final value of the path integral is unchanged. Previous analyses have considered the case of real scalar fields in thermal equilibrium, employing a closed Schwinger-Keldysh time contour, allowing the evaluation of the full quantum correlation functions. Here we extend the analysis by not requiring a closed time path, instead allowing for an initial density matrix for out-of-equilibrium initial value problems. We are able to explicitly implement Gaussian initial conditions, and by separating the initial time and the later times into a two-step Monte-Carlo sampling, we are able to avoid the phenomenon of multiple thimbles. In fact, there exists one and only one thimble for each sample member of the initial density matrix. We demonstrate the approach through explicitly computing the real-time propagator for an interacting scalar in 0+1 dimensions, and find very good convergence allowing for comparison with perturbation theory and the classical-statistical approximation to real-time dynamics.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.