Papers
Topics
Authors
Recent
Search
2000 character limit reached

Linear motion planning with controlled collisions and pure planar braids

Published 17 Feb 2019 in math.AT | (1902.06190v2)

Abstract: We compute the Lusternik-Schnirelmann category (LS-cat) and the higher topological complexity ($TC_s$, $s\geq2$) of the "no-$k$-equal" configuration space Conf$_k(\mathbb{R},n)$. This yields (with $k=3$) the LS-cat and the higher topological complexity of Khovanov's group PP$_n$ of pure planar braids on $n$ strands, which is an $\mathbb{R}$-analogue of Artin's classical pure braid group on $n$ strands. Our methods can be used to describe optimal motion planners for PP$_n$ provided $n$ is small.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.