Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Accelerated Sampling Kaczmarz Motzkin Algorithm for The Linear Feasibility Problem (1902.03502v2)

Published 9 Feb 2019 in math.OC

Abstract: The Sampling Kaczmarz Motzkin (SKM) algorithm is a generalized method for solving large scale linear systems of inequalities. Having its root in the relaxation method of Agmon, Schoenberg, and Motzkin and the randomized Kaczmarz method, SKM outperforms the state of the art methods in solving large-scale Linear Feasibility (LF) problems. Motivated by SKM's success, in this work, we propose an Accelerated Sampling Kaczmarz Motzkin (ASKM) algorithm which achieves better convergence compared to the standard SKM algorithm on ill conditioned problems. We provide a thorough convergence analysis for the proposed accelerated algorithm and validate the results with various numerical experiments. We compare the performance and effectiveness of ASKM algorithm with SKM, Interior Point Method (IPM) and Active Set Method (ASM) on randomly generated instances as well as Netlib LPs. In most of the test instances, the proposed ASKM algorithm outperforms the other state of the art methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.