Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Embedding onto Wheel-like Networks (1902.03391v1)

Published 9 Feb 2019 in math.CO

Abstract: One of the important features of an interconnection network is its ability to efficiently simulate programs or parallel algorithms written for other architectures. Such a simulation problem can be mathematically formulated as a graph embedding problem. In this paper we compute the lower bound for dilation and congestion of embedding onto wheel-like networks. Further, we compute the exact dilation of embedding wheel-like networks into hypertrees, proving that the lower bound obtained is sharp. Again, we compute the exact congestion of embedding windmill graphs into circulant graphs, proving that the lower bound obtained is sharp. Further, we compute the exact wirelength of embedding wheels and fans into 1,2-fault hamiltonian graphs. Using this we estimate the exact wirelength of embedding wheels and fans into circulant graphs, generalized Petersen graphs, augmented cubes, crossed cubes, M\"{o}bius cubes, twisted cubes, twisted $n$-cubes, locally twisted cubes, generalized twisted cubes, odd-dimensional cube connected cycle, hierarchical cubic networks, alternating group graphs, arrangement graphs, 3-regular planer hamiltonian graphs, star graphs, generalised matching networks, fully connected cubic networks, tori and 1-fault traceable graphs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.