Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Permanent and Intermittent Purchase Hotspots via Computational Stigmergy (1902.01601v1)

Published 5 Feb 2019 in cs.SI and cs.CY

Abstract: The analysis of credit card transactions allows gaining new insights into the spending occurrences and mobility behavior of large numbers of individuals at an unprecedented scale. However, unfolding such spatiotemporal patterns at a community level implies a non-trivial system modeling and parametrization, as well as, a proper representation of the temporal dynamic. In this work we address both those issues by means of a novel computational technique, i.e. computational stigmergy. By using computational stigmergy each sample position is associated with a digital pheromone deposit, which aggregates with other deposits according to their spatiotemporal proximity. By processing transactions data with computational stigmergy, it is possible to identify high-density areas (hotspots) occurring in different time and days, as well as, analyze their consistency over time. Indeed, a hotspot can be permanent, i.e. present throughout the period of observation, or intermittent, i.e. present only in certain time and days due to community level occurrences (e.g. nightlife). Such difference is not only spatial (where the hotspot occurs) and temporal (when the hotspot occurs) but affects also which people visit the hotspot. The proposed approach is tested on a real-world dataset containing the credit card transaction of 60k users between 2014 and 2015.

Citations (2)

Summary

We haven't generated a summary for this paper yet.