Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Information-Theoretic Approach to Minimax Regret in Partial Monitoring (1902.00470v2)

Published 1 Feb 2019 in cs.LG, math.OC, and stat.ML

Abstract: We prove a new minimax theorem connecting the worst-case Bayesian regret and minimax regret under partial monitoring with no assumptions on the space of signals or decisions of the adversary. We then generalise the information-theoretic tools of Russo and Van Roy (2016) for proving Bayesian regret bounds and combine them with the minimax theorem to derive minimax regret bounds for various partial monitoring settings. The highlight is a clean analysis of non-degenerate easy' andhard' finite partial monitoring, with new regret bounds that are independent of arbitrarily large game-dependent constants. The power of the generalised machinery is further demonstrated by proving that the minimax regret for k-armed adversarial bandits is at most sqrt{2kn}, improving on existing results by a factor of 2. Finally, we provide a simple analysis of the cops and robbers game, also improving best known constants.

Citations (67)

Summary

We haven't generated a summary for this paper yet.