Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Connections Between Mirror Descent, Thompson Sampling and the Information Ratio (1905.11817v1)

Published 28 May 2019 in cs.LG and stat.ML

Abstract: The information-theoretic analysis by Russo and Van Roy (2014) in combination with minimax duality has proved a powerful tool for the analysis of online learning algorithms in full and partial information settings. In most applications there is a tantalising similarity to the classical analysis based on mirror descent. We make a formal connection, showing that the information-theoretic bounds in most applications can be derived from existing techniques for online convex optimisation. Besides this, for $k$-armed adversarial bandits we provide an efficient algorithm with regret that matches the best information-theoretic upper bound and improve best known regret guarantees for online linear optimisation on $\ell_p$-balls and bandits with graph feedback.

Citations (33)

Summary

We haven't generated a summary for this paper yet.