Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inducing Sparse Coding and And-Or Grammar from Generator Network (1901.11494v1)

Published 20 Jan 2019 in cs.LG, cs.AI, and cs.CV

Abstract: We introduce an explainable generative model by applying sparse operation on the feature maps of the generator network. Meaningful hierarchical representations are obtained using the proposed generative model with sparse activations. The convolutional kernels from the bottom layer to the top layer of the generator network can learn primitives such as edges and colors, object parts, and whole objects layer by layer. From the perspective of the generator network, we propose a method for inducing both sparse coding and the AND-OR grammar for images. Experiments show that our method is capable of learning meaningful and explainable hierarchical representations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.