Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GH-Feat: Learning Versatile Generative Hierarchical Features from GANs (2301.05315v1)

Published 12 Jan 2023 in cs.CV

Abstract: Recent years witness the tremendous success of generative adversarial networks (GANs) in synthesizing photo-realistic images. GAN generator learns to compose realistic images and reproduce the real data distribution. Through that, a hierarchical visual feature with multi-level semantics spontaneously emerges. In this work we investigate that such a generative feature learned from image synthesis exhibits great potentials in solving a wide range of computer vision tasks, including both generative ones and more importantly discriminative ones. We first train an encoder by considering the pretrained StyleGAN generator as a learned loss function. The visual features produced by our encoder, termed as Generative Hierarchical Features (GH-Feat), highly align with the layer-wise GAN representations, and hence describe the input image adequately from the reconstruction perspective. Extensive experiments support the versatile transferability of GH-Feat across a range of applications, such as image editing, image processing, image harmonization, face verification, landmark detection, layout prediction, image retrieval, etc. We further show that, through a proper spatial expansion, our developed GH-Feat can also facilitate fine-grained semantic segmentation using only a few annotations. Both qualitative and quantitative results demonstrate the appealing performance of GH-Feat.

Citations (2)

Summary

We haven't generated a summary for this paper yet.