Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sensing with Optimal Matrices (1206.0277v1)

Published 1 Jun 2012 in cs.IT, cs.DM, and math.IT

Abstract: We consider the problem of designing optimal $M \times N$ ($M \leq N$) sensing matrices which minimize the maximum condition number of all the submatrices of $K$ columns. Such matrices minimize the worst-case estimation errors when only $K$ sensors out of $N$ sensors are available for sensing at a given time. For M=2 and matrices with unit-normed columns, this problem is equivalent to the problem of maximizing the minimum singular value among all the submatrices of $K$ columns. For M=2, we are able to give a closed form formula for the condition number of the submatrices. When M=2 and K=3, for an arbitrary $N\geq3$, we derive the optimal matrices which minimize the maximum condition number of all the submatrices of $K$ columns. Surprisingly, a uniformly distributed design is often \emph{not} the optimal design minimizing the maximum condition number.

Summary

We haven't generated a summary for this paper yet.