Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stacking and stability (1901.09134v1)

Published 26 Jan 2019 in cs.LG and stat.ML

Abstract: Stacking is a general approach for combining multiple models toward greater predictive accuracy. It has found various application across different domains, ensuing from its meta-learning nature. Our understanding, nevertheless, on how and why stacking works remains intuitive and lacking in theoretical insight. In this paper, we use the stability of learning algorithms as an elemental analysis framework suitable for addressing the issue. To this end, we analyze the hypothesis stability of stacking, bag-stacking, and dag-stacking and establish a connection between bag-stacking and weighted bagging. We show that the hypothesis stability of stacking is a product of the hypothesis stability of each of the base models and the combiner. Moreover, in bag-stacking and dag-stacking, the hypothesis stability depends on the sampling strategy used to generate the training set replicates. Our findings suggest that 1) subsampling and bootstrap sampling improve the stability of stacking, and 2) stacking improves the stability of both subbagging and bagging.

Citations (1)

Summary

We haven't generated a summary for this paper yet.