Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

View selection in multi-view stacking: Choosing the meta-learner (2010.16271v3)

Published 30 Oct 2020 in stat.ML, cs.LG, and stat.ME

Abstract: Multi-view stacking is a framework for combining information from different views (i.e. different feature sets) describing the same set of objects. In this framework, a base-learner algorithm is trained on each view separately, and their predictions are then combined by a meta-learner algorithm. In a previous study, stacked penalized logistic regression, a special case of multi-view stacking, has been shown to be useful in identifying which views are most important for prediction. In this article we expand this research by considering seven different algorithms to use as the meta-learner, and evaluating their view selection and classification performance in simulations and two applications on real gene-expression data sets. Our results suggest that if both view selection and classification accuracy are important to the research at hand, then the nonnegative lasso, nonnegative adaptive lasso and nonnegative elastic net are suitable meta-learners. Exactly which among these three is to be preferred depends on the research context. The remaining four meta-learners, namely nonnegative ridge regression, nonnegative forward selection, stability selection and the interpolating predictor, show little advantages in order to be preferred over the other three.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. \APACrefYearMonthDay2019. \BBOQ\APACrefatitlehmeasure: The H-Measure and Other Scalar Classification Performance Metrics hmeasure: The H-measure and other scalar classification performance metrics\BBCQ [\bibcomputersoftwaremanual]. {APACrefURL} https://CRAN.R-project.org/package=hmeasure \APACrefnoteR package version 1.0-2 \PrintBackRefs\CurrentBib
  2. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleAUC: Threshold Independent Performance Measures for Probabilistic Classifiers. AUC: Threshold independent performance measures for probabilistic classifiers.\BBCQ [\bibcomputersoftwaremanual]. {APACrefURL} https://CRAN.R-project.org/package=AUC \APACrefnoteR package version 0.3.0 \PrintBackRefs\CurrentBib
  3. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleHigh-Dimensional Cox Models: The Choice of Penalty as Part of the Model Building Process. High-dimensional Cox models: The choice of penalty as part of the model building process.\BBCQ \APACjournalVolNumPagesBiometrical Journal52150-69. {APACrefDOI} \doi10.1002/bimj.200900064 \PrintBackRefs\CurrentBib
  4. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleBenchmark for Filter Methods for Feature Selection in High-Dimensional Classification Data Benchmark for filter methods for feature selection in high-dimensional classification data.\BBCQ \APACjournalVolNumPagesComputational Statistics & Data Analysis143106839. {APACrefDOI} \doi10.1016/j.csda.2019.106839 \PrintBackRefs\CurrentBib
  5. \APACinsertmetastarBreiman1996{APACrefauthors}Breiman, L.  \APACrefYearMonthDay1996. \BBOQ\APACrefatitleStacked Regressions Stacked regressions.\BBCQ \APACjournalVolNumPagesMachine Learning2449-64. {APACrefDOI} \doi10.1007/bf00117832 \PrintBackRefs\CurrentBib
  6. \APACrefYearMonthDay2006. \BBOQ\APACrefatitleMolecular Classification of Crohn’s Disease and Ulcerative Colitis Patients Using Transcriptional Profiles in Peripheral Blood Mononuclear Cells Molecular classification of Crohn’s disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells.\BBCQ \APACjournalVolNumPagesThe Journal of Molecular Diagnostics8151–61. {APACrefDOI} \doi10.2353/jmoldx.2006.050079 \PrintBackRefs\CurrentBib
  7. \APACinsertmetastarCohen1988{APACrefauthors}Cohen, J.  \APACrefYear1988. \APACrefbtitleStatistical Power Analysis for the Behavioral Sciences (2nd Ed.) Statistical power analysis for the behavioral sciences (2nd ed.). \APACaddressPublisherNew YorkAcademic Press. \PrintBackRefs\CurrentBib
  8. \APACrefYearMonthDay2016. \BBOQ\APACrefatitleCombining Multiple Anatomical MRI Measures Improves Alzheimer’s Disease Classification Combining multiple anatomical MRI measures improves Alzheimer’s disease classification.\BBCQ \APACjournalVolNumPagesHuman Brain Mapping371920-1929. {APACrefDOI} \doi10.1002/hbm.23147 \PrintBackRefs\CurrentBib
  9. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleA Coherent Interpretation of AUC as a Measure of Aggregated Classification Performance A coherent interpretation of AUC as a measure of aggregated classification performance.\BBCQ \BIn \APACrefbtitleProceedings of the 28th International Conference on Machine Learning Proceedings of the 28th international conference on machine learning (\BPGS 657–664). \PrintBackRefs\CurrentBib
  10. \APACinsertmetastarFleiss1971{APACrefauthors}Fleiss, J\BPBIL.  \APACrefYearMonthDay1971. \BBOQ\APACrefatitleMeasuring Nominal Scale Agreement among Many Raters Measuring nominal scale agreement among many raters.\BBCQ \APACjournalVolNumPagesPsychological Bulletin765378–382. {APACrefDOI} \doi10.1037/h0031619 \PrintBackRefs\CurrentBib
  11. \APACrefYearMonthDay2017. \BBOQ\APACrefatitleMulti-View Ensemble Classification of Brain Connectivity Images for Neurodegeneration Type Discrimination Multi-view ensemble classification of brain connectivity images for neurodegeneration type discrimination.\BBCQ \APACjournalVolNumPagesNeuroinformatics152199–213. {APACrefDOI} \doi10.1007/s12021-017-9324-2 \PrintBackRefs\CurrentBib
  12. \APACrefYear2009. \APACrefbtitleThe Elements of Statistical Learning The elements of statistical learning (\PrintOrdinal2nd \BEd). \APACaddressPublisherNew York, NYSpringer-Verlag. {APACrefDOI} \doi10.1007/978-0-387-84858-7 \PrintBackRefs\CurrentBib
  13. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleRegularization Paths for Generalized Linear Models via Coordinate Descent Regularization paths for generalized linear models via coordinate descent.\BBCQ \APACjournalVolNumPagesJournal of Statistical Software3311-22. {APACrefDOI} \doi10.18637/jss.v033.i01 \PrintBackRefs\CurrentBib
  14. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleMulti-View Stacking for Activity Recognition with Sound and Accelerometer Data Multi-view stacking for activity recognition with sound and accelerometer data.\BBCQ \APACjournalVolNumPagesInformation Fusion4045–56. {APACrefDOI} \doi10.1016/j.inffus.2017.06.004 \PrintBackRefs\CurrentBib
  15. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleAn Introduction to Variable and Feature Selection An introduction to variable and feature selection.\BBCQ \APACjournalVolNumPagesJournal of Machine Learning Research3Mar1157–1182. {APACrefDOI} \doi10.1007/978-3-540-35488-8_1 \PrintBackRefs\CurrentBib
  16. \APACinsertmetastarHand2009{APACrefauthors}Hand, D\BPBIJ.  \APACrefYearMonthDay2009. \BBOQ\APACrefatitleMeasuring Classifier Performance: A Coherent Alternative to the Area under the ROC Curve Measuring classifier performance: A coherent alternative to the area under the ROC curve.\BBCQ \APACjournalVolNumPagesMachine Learning77103–123. {APACrefDOI} \doi10.1007/s10994-009-5119-5 \PrintBackRefs\CurrentBib
  17. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleBest Subset, Forward Stepwise, or Lasso? Analysis and Recommendations Based on Extensive Comparisons Best subset, forward stepwise, or lasso? analysis and recommendations based on extensive comparisons.\BBCQ \APACjournalVolNumPagesStatistical Science354579–592. {APACrefDOI} \doi10.1214/19-sts733 \PrintBackRefs\CurrentBib
  18. \APACrefYear2015. \APACrefbtitleStatistical Learning With Sparsity: The Lasso and Generalizations Statistical learning with sparsity: The lasso and generalizations. \APACaddressPublisherCRC press. {APACrefDOI} \doi10.1201/b18401 \PrintBackRefs\CurrentBib
  19. \APACrefYearMonthDay2012. \BBOQ\APACrefatitleA Unified View of Performance Metrics: Translating Threshold Choice into Expected Classification Loss A unified view of performance metrics: Translating threshold choice into expected classification loss.\BBCQ \APACjournalVolNumPagesJournal of Machine Learning Research1312813–2869. {APACrefDOI} \doi10.1145/1015330.1015395 \PrintBackRefs\CurrentBib
  20. \APACrefYearMonthDay1970. \BBOQ\APACrefatitleRidge Regression: Biased Estimation for Nonorthogonal Problems Ridge regression: Biased estimation for nonorthogonal problems.\BBCQ \APACjournalVolNumPagesTechnometrics12155–67. {APACrefDOI} \doi10.1080/00401706.1970.10488634 \PrintBackRefs\CurrentBib
  21. \APACrefYearMonthDay2015. \BBOQ\APACrefatitleControlling False Discoveries in High-Dimensional Situations: Boosting with Stability Selection Controlling false discoveries in high-dimensional situations: Boosting with stability selection.\BBCQ \APACjournalVolNumPagesBMC Bioinformatics16144. {APACrefDOI} \doi10.1186/s12859-015-0575-3 \PrintBackRefs\CurrentBib
  22. \APACrefYearMonthDay2017. \BBOQ\APACrefatitlestabs: Stability Selection with Error Control stabs: Stability selection with error control\BBCQ [\bibcomputersoftwaremanual]. {APACrefURL} https://CRAN.R-project.org/package=stabs \APACrefnoteR package version 0.6-3 \PrintBackRefs\CurrentBib
  23. \APACrefYearMonthDay1977. \BBOQ\APACrefatitleThe Measurement of Observer Agreement for Categorical Data The measurement of observer agreement for categorical data.\BBCQ \APACjournalVolNumPagesBiometrics331159–174. {APACrefDOI} \doi10.2307/2529310 \PrintBackRefs\CurrentBib
  24. \APACrefYearMonthDay1992. \BBOQ\APACrefatitleRidge Estimators in Logistic Regression Ridge estimators in logistic regression.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society C411191–201. {APACrefDOI} \doi10.2307/2347628 \PrintBackRefs\CurrentBib
  25. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleA Case Study of Stacked Multi-View Learning in Dementia Research A case study of stacked multi-view learning in dementia research.\BBCQ \BIn \APACrefbtitle13th Conference on Artificial Intelligence in Medicine 13th conference on artificial intelligence in medicine (\BPG 60-69). \PrintBackRefs\CurrentBib
  26. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleA Review on Machine Learning Principles for Multi-View Biological Data Integration A review on machine learning principles for multi-view biological data integration.\BBCQ \APACjournalVolNumPagesBriefings in Bioinformatics192325–340. {APACrefDOI} \doi10.1093/bib/bbw113 \PrintBackRefs\CurrentBib
  27. \APACrefYearMonthDay2004. \BBOQ\APACrefatitleA Two-Gene Expression Ratio Predicts Clinical Outcome in Breast Cancer Patients Treated with Tamoxifen A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen.\BBCQ \APACjournalVolNumPagesCancer Cell56607–616. {APACrefDOI} \doi10.1016/j.ccr.2004.05.015 \PrintBackRefs\CurrentBib
  28. \APACrefYearMonthDay1998. \BBOQ\APACrefatitleMersenne Twister: a 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator.\BBCQ \APACjournalVolNumPagesACM Transactions on Modeling and Computer Simulation813–30. {APACrefDOI} \doi10.1145/272991.272995 \PrintBackRefs\CurrentBib
  29. \APACrefYearMonthDay2006. \BBOQ\APACrefatitleHigh-Dimensional Graphs and Variable Selection with the Lasso. High-dimensional graphs and variable selection with the lasso.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics3431436-1462. {APACrefDOI} \doi10.1214/009053606000000281 \PrintBackRefs\CurrentBib
  30. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleStability Selection Stability selection.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society B724417–473. {APACrefDOI} \doi10.1111/j.1467-9868.2010.00740.x \PrintBackRefs\CurrentBib
  31. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleOn the Stability of Feature Selection Algorithms On the stability of feature selection algorithms.\BBCQ \APACjournalVolNumPagesJournal of Machine Learning Research181741–54. {APACrefDOI} \doi10.1007/978-3-030-46150-8_20 \PrintBackRefs\CurrentBib
  32. \APACrefYearMonthDay2015. \BBOQ\APACrefatitleSparse Overlapping Group Lasso for Integrative Multi-Omics Analysis Sparse overlapping group lasso for integrative multi-omics analysis.\BBCQ \APACjournalVolNumPagesJournal of Computational Biology22273–84. {APACrefDOI} \doi10.1089/cmb.2014.0197 \PrintBackRefs\CurrentBib
  33. \APACinsertmetastarR{APACrefauthors}R Core Team.  \APACrefYearMonthDay2017. \BBOQ\APACrefatitleR: A Language and Environment for Statistical Computing R: A language and environment for statistical computing\BBCQ [\bibcomputersoftwaremanual]. \APACaddressPublisherVienna, Austria. {APACrefURL} https://www.R-project.org/ \PrintBackRefs\CurrentBib
  34. \APACrefYear2013. \APACrefbtitleSocial Science Research Design and Statistics: A Practitioner’s Guide to Research Methods and IBM SPSS Social science research design and statistics: A practitioner’s guide to research methods and IBM SPSS. \APACaddressPublisherWatertree Press LLC. \PrintBackRefs\CurrentBib
  35. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleVariable Selection with Error Control: Another Look at Stability Selection Variable selection with error control: Another look at stability selection.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society: Series B (Statistical Methodology)75155–80. {APACrefDOI} \doi10.1111/j.1467-9868.2011.01034.x \PrintBackRefs\CurrentBib
  36. \APACrefYearMonthDay2013. \BBOQ\APACrefatitleA Sparse-Group Lasso A sparse-group lasso.\BBCQ \APACjournalVolNumPagesJournal of Computational and Graphical Statistics222231-245. {APACrefDOI} \doi10.1080/10618600.2012.681250 \PrintBackRefs\CurrentBib
  37. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleGene Set Enrichment Analysis: a Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.\BBCQ \APACjournalVolNumPagesProceedings of the National Academy of Sciences of the United States of America1024315545–15550. {APACrefDOI} \doi10.1073/pnas.0506580102 \PrintBackRefs\CurrentBib
  38. \APACrefYear2019. \APACrefbtitleMultiview Machine Learning Multiview machine learning. \APACaddressPublisherSpringer-Verlag. {APACrefDOI} \doi10.1007/978-981-13-3029-2 \PrintBackRefs\CurrentBib
  39. \APACinsertmetastarlasso{APACrefauthors}Tibshirani, R.  \APACrefYearMonthDay1996. \BBOQ\APACrefatitleRegression Shrinkage and Selection via the Lasso Regression shrinkage and selection via the lasso.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society B581267-288. {APACrefDOI} \doi10.1111/j.2517-6161.1996.tb02080.x \PrintBackRefs\CurrentBib
  40. \APACrefYearMonthDay1999. \BBOQ\APACrefatitleIssues in Stacked Generalization Issues in stacked generalization.\BBCQ \APACjournalVolNumPagesJournal of Artificial Intelligence Research10271-289. {APACrefDOI} \doi10.1613/jair.594 \PrintBackRefs\CurrentBib
  41. \APACinsertmetastarmvs{APACrefauthors}Van Loon, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitlemvs: Methods for High-Dimensional Multi-View Learning mvs: Methods for high-dimensional multi-view learning\BBCQ [\bibcomputersoftwaremanual]. {APACrefURL} https://CRAN.R-project.org/package=mvs \APACrefnoteR package version 1.0.2 \PrintBackRefs\CurrentBib
  42. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleStacked Penalized Logistic Regression for Selecting Views in Multi-View Learning Stacked penalized logistic regression for selecting views in multi-view learning.\BBCQ \APACjournalVolNumPagesInformation Fusion61113–123. {APACrefDOI} \doi10.1016/j.inffus.2020.03.007 \PrintBackRefs\CurrentBib
  43. \APACrefYear2002. \APACrefbtitleModern Applied Statistics with S Modern applied statistics with S (\PrintOrdinal4th \BEd). \APACaddressPublisherNew YorkSpringer-Verlag. \APACrefnoteISBN 0-387-95457-0 \PrintBackRefs\CurrentBib
  44. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleFeature Selection Methods: Case of Filter and Wrapper Approaches for Maximising Classification Accuracy Feature selection methods: Case of filter and wrapper approaches for maximising classification accuracy.\BBCQ \APACjournalVolNumPagesPertanika Journal of Science & Technology261. {APACrefDOI} \doi10.1109/icecct.2019.8869518 \PrintBackRefs\CurrentBib
  45. \APACrefYearMonthDay2010. \BBOQ\APACrefatitleAnalysing Biological Pathways in Genome-Wide Association Studies Analysing biological pathways in genome-wide association studies.\BBCQ \APACjournalVolNumPagesNature Reviews Genetics1112843–854. {APACrefDOI} \doi10.1038/nrg2884 \PrintBackRefs\CurrentBib
  46. \APACrefYearMonthDay2017. \BBOQ\APACrefatitleLsei: Solving Least Squares or Quadratic Programming Problems under Equality/Inequality Constraints Lsei: Solving least squares or quadratic programming problems under equality/inequality constraints\BBCQ [\bibcomputersoftwaremanual]. {APACrefURL} https://CRAN.R-project.org/package=lsei \APACrefnoteR package version 1.2-0 \PrintBackRefs\CurrentBib
  47. \APACinsertmetastarWolpert1992{APACrefauthors}Wolpert, D\BPBIH.  \APACrefYearMonthDay1992. \BBOQ\APACrefatitleStacked Generalization Stacked generalization.\BBCQ \APACjournalVolNumPagesNeural Networks5241-259. {APACrefDOI} \doi10.1016/s0893-6080(05)80023-1 \PrintBackRefs\CurrentBib
  48. \APACrefYearMonthDay2014. \BBOQ\APACrefatitleNonnegative-Lasso and Application in Index Tracking Nonnegative-lasso and application in index tracking.\BBCQ \APACjournalVolNumPagesComputational Statistics & Data Analysis70116-126. {APACrefDOI} \doi10.1016/j.csda.2013.08.012 \PrintBackRefs\CurrentBib
  49. \APACrefYearMonthDay2012. \BBOQ\APACrefatitleSparse Algorithms Are Not Stable: A No-Free-Lunch Theorem Sparse algorithms are not stable: A no-free-lunch theorem.\BBCQ \APACjournalVolNumPagesIEEE Transactions on Pattern Analysis and Machine Intelligence341187–193. {APACrefDOI} \doi10.1109/tpami.2011.177 \PrintBackRefs\CurrentBib
  50. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleEfficient Methods for Overlapping Group Lasso Efficient methods for overlapping group lasso.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems24352–360. {APACrefDOI} \doi10.1109/tpami.2013.17 \PrintBackRefs\CurrentBib
  51. \APACrefYearMonthDay2007. \BBOQ\APACrefatitleModel Selection and Estimation in Regression with Grouped Variables Model selection and estimation in regression with grouped variables.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society B68149-67. {APACrefDOI} \doi10.1111/j.1467-9868.2005.00532.x \PrintBackRefs\CurrentBib
  52. \APACrefYearMonthDay2017. \BBOQ\APACrefatitleMulti-View Learning Overview: Recent Progress and New Challenges Multi-view learning overview: Recent progress and new challenges.\BBCQ \APACjournalVolNumPagesInformation Fusion3843–54. {APACrefDOI} \doi10.1016/j.inffus.2017.02.007 \PrintBackRefs\CurrentBib
  53. \APACinsertmetastaradaptive_lasso{APACrefauthors}Zou, H.  \APACrefYearMonthDay2006. \BBOQ\APACrefatitleThe Adaptive Lasso and Its Oracle Properties The adaptive lasso and its oracle properties.\BBCQ \APACjournalVolNumPagesJournal of the American Statistical Association1014761418–1429. {APACrefDOI} \doi10.1198/016214506000000735 \PrintBackRefs\CurrentBib
  54. \APACrefYearMonthDay2005. \BBOQ\APACrefatitleRegularization and Variable Selection via the Elastic Net Regularization and variable selection via the elastic net.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society B672301-320. {APACrefDOI} \doi10.1111/j.1467-9868.2005.00503.x \PrintBackRefs\CurrentBib
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com