Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Stationary Equilibria of Mean Field Games with Finite State and Action Space (1901.08803v2)

Published 25 Jan 2019 in math.OC

Abstract: Mean field games formalize dynamic games with a continuum of players and explicit interaction where the players can have heterogeneous states. As they additionally yield approximate equilibria of corresponding $N$-player games, they are of great interest for socio-economic applications. However, most techniques used for mean field games rely on assumptions that imply that for each population distribution there is a unique optimizer of the Hamiltonian. For finite action spaces, this will only hold for trivial models. Thus, the techniques used so far are not applicable. We propose a model with finite state and action space, where the dynamics are given by a time-inhomogeneous Markov chain that might depend on the current population distribution. We show existence of stationary mean field equilibria in mixed strategies under mild assumptions and propose techniques to compute all these equilibria. More precisely, our results allow -- given that the generators are irreducible -- to characterize the set of stationary mean field equilibria as the set of all fixed points of a map completely characterized by the transition rates and rewards for deterministic strategies. Additionally, we propose several partial results for the case of non-irreducible generators and we demonstrate the presented techniques on two examples.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)