Papers
Topics
Authors
Recent
2000 character limit reached

Double variational principle for mean dimension

Published 17 Jan 2019 in math.DS, cs.IT, and math.IT | (1901.05623v1)

Abstract: We develop a variational principle between mean dimension theory and rate distortion theory. We consider a minimax problem about the rate distortion dimension with respect to two variables (metrics and measures). We prove that the minimax value is equal to the mean dimension for a dynamical system with the marker property. The proof exhibits a new combination of ergodic theory, rate distortion theory and geometric measure theory. Along the way of the proof, we also show that if a dynamical system has the marker property then it has a metric for which the upper metric mean dimension is equal to the mean dimension.

Citations (56)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.