Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Newton method for harmonic mappings in the plane (1901.05242v2)

Published 16 Jan 2019 in math.CV, cs.NA, and math.NA

Abstract: We present an iterative root finding method for harmonic mappings in the complex plane, which is a generalization of Newton's method for analytic functions. The complex formulation of the method allows an analysis in a complex variables spirit. For zeros close to poles of $f = h + \bar{g}$ we construct initial points for which the harmonic Newton iteration is guaranteed to converge. Moreover, we study the number of solutions of $f(z) = \eta$ close to the critical set of $f$ for certain $\eta \in \mathbb{C}$. We provide a Matlab implementation of the method, and illustrate our results with several examples and numerical experiments, including phase plots and plots of the basins of attraction.

Citations (8)

Summary

We haven't generated a summary for this paper yet.