Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Spectral disjointness of rescalings of some surface flows (1901.04724v3)

Published 15 Jan 2019 in math.DS

Abstract: We study self-similarity problem for two classes of flows: (1) special flows over circle rotations and under roof functions with symmetric logarithmic singularities (2) special flows over interval exchange transformations and under roof functions which are of two types * piecewise constant with one additional discontinuity which is not a discontinuity of the IET; * piecewise linear over exchanged intervals with non-zero slope. We show that if ${Tf_t}_{t\in\mathbb R}$ is as in (1) then for a full measure set of rotations, and for every two distinct natural numbers $K$ and $L$, we have that ${Tf_{Kt}}_{t\in\mathbb R}$ and ${Tf_{Lt}}_{t\in\mathbb R}$ are spectrally disjoint. Similarly, if ${Tf_t}_{t\in\mathbb R}$ is as in (2), then for a full measure set of IET's, a.e. position of the additional discontinuity (of $f$, in piecewise constant case) and every two distinct natural numbers $K$ and $L$, the flows ${Tf_{Kt}}_{t\in\mathbb R}$ and ${Tf_{Lt}}_{t\in\mathbb R}$ are spectrally disjoint.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.