Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The statistical Minkowski distances: Closed-form formula for Gaussian Mixture Models (1901.03732v2)

Published 9 Jan 2019 in math.PR, cs.IT, cs.LG, math.IT, and stat.ML

Abstract: The traditional Minkowski distances are induced by the corresponding Minkowski norms in real-valued vector spaces. In this work, we propose novel statistical symmetric distances based on the Minkowski's inequality for probability densities belonging to Lebesgue spaces. These statistical Minkowski distances admit closed-form formula for Gaussian mixture models when parameterized by integer exponents. This result extends to arbitrary mixtures of exponential families with natural parameter spaces being cones: This includes the binomial, the multinomial, the zero-centered Laplacian, the Gaussian and the Wishart mixtures, among others. We also derive a Minkowski's diversity index of a normalized weighted set of probability distributions from Minkowski's inequality.

Citations (12)

Summary

We haven't generated a summary for this paper yet.