Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian mixtures: entropy and geometric inequalities (1611.04921v3)

Published 15 Nov 2016 in math.PR, cs.IT, math.FA, math.IT, and math.MG

Abstract: A symmetric random variable is called a Gaussian mixture if it has the same distribution as the product of two independent random variables, one being positive and the other a standard Gaussian random variable. Examples of Gaussian mixtures include random variables with densities proportional to $e{-|t|p}$ and symmetric $p$-stable random variables, where $p\in(0,2]$. We obtain various sharp moment and entropy comparison estimates for weighted sums of independent Gaussian mixtures and investigate extensions of the B-inequality and the Gaussian correlation inequality in the context of Gaussian mixtures. We also obtain a correlation inequality for symmetric geodesically convex sets in the unit sphere equipped with the normalized surface area measure. We then apply these results to derive sharp constants in Khintchine inequalities for vectors uniformly distributed on the unit balls with respect to $p$-norms and provide short proofs to new and old comparison estimates for geometric parameters of sections and projections of such balls.

Citations (55)

Summary

We haven't generated a summary for this paper yet.