Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian processes with linear operator inequality constraints (1901.03134v2)

Published 10 Jan 2019 in stat.ML and cs.LG

Abstract: This paper presents an approach for constrained Gaussian Process (GP) regression where we assume that a set of linear transformations of the process are bounded. It is motivated by machine learning applications for high-consequence engineering systems, where this kind of information is often made available from phenomenological knowledge. We consider a GP $f$ over functions on $\mathcal{X} \subset \mathbb{R}{n}$ taking values in $\mathbb{R}$, where the process $\mathcal{L}f$ is still Gaussian when $\mathcal{L}$ is a linear operator. Our goal is to model $f$ under the constraint that realizations of $\mathcal{L}f$ are confined to a convex set of functions. In particular, we require that $a \leq \mathcal{L}f \leq b$, given two functions $a$ and $b$ where $a < b$ pointwise. This formulation provides a consistent way of encoding multiple linear constraints, such as shape-constraints based on e.g. boundedness, monotonicity or convexity. We adopt the approach of using a sufficiently dense set of virtual observation locations where the constraint is required to hold, and derive the exact posterior for a conjugate likelihood. The results needed for stable numerical implementation are derived, together with an efficient sampling scheme for estimating the posterior process.

Citations (36)

Summary

We haven't generated a summary for this paper yet.