Learned Nonlinear Predictor for Critically Sampled 3D Point Cloud Attribute Compression (2311.13539v2)
Abstract: We study 3D point cloud attribute compression via a volumetric approach: assuming point cloud geometry is known at both encoder and decoder, parameters $\theta$ of a continuous attribute function $f: \mathbb{R}3 \mapsto \mathbb{R}$ are quantized to $\hat{\theta}$ and encoded, so that discrete samples $f_{\hat{\theta}}(\mathbf{x}i)$ can be recovered at known 3D points $\mathbf{x}_i \in \mathbb{R}3$ at the decoder. Specifically, we consider a nested sequences of function subspaces $\mathcal{F}{(p)}{l_0} \subseteq \cdots \subseteq \mathcal{F}{(p)}_L$, where $\mathcal{F}l{(p)}$ is a family of functions spanned by B-spline basis functions of order $p$, $f_l*$ is the projection of $f$ on $\mathcal{F}_l{(p)}$ represented as low-pass coefficients $F_l*$, and $g_l*$ is the residual function in an orthogonal subspace $\mathcal{G}_l{(p)}$ (where $\mathcal{G}_l{(p)} \oplus \mathcal{F}_l{(p)} = \mathcal{F}{l+1}{(p)}$) represented as high-pass coefficients $G_l*$. In this paper, to improve coding performance over \cite{do2023volumetric}, we study predicting $f_{l+1}*$ at level $l+1$ given $f_l*$ at level $l$ and encoding of $G_l*$ for the $p=1$ case (RAHT($1$)). For the prediction, we formalize RAHT(1) linear prediction in MPEG-PCC in a theoretical framework, and propose a new nonlinear predictor using a polynomial of bilateral filter. We derive equations to efficiently compute the critically sampled high-pass coefficients $G_l*$ amenable to encoding. We optimize parameters in our resulting feed-forward network on a large training set of point clouds by minimizing a rate-distortion Lagrangian. Experimental results show that our improved framework outperforms the MPEG G-PCC predictor by $11\%$--$12\%$ in bit rate.